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Martin Li

1 Integration Rule I: u-substitution

There is a very useful way to calculate indefinite integrals using the method
of substitution. This is similar in concept to the change of variables. Let us
illustrate how we can do a w-substitution using an example.

Example 1.1 Ewaluate the indefinite integral
/ Va2 + 4 dz.

The integral looks difficult to evaluate at a first glance since the thing
inside the square root is rather complicated. Let’s try to change it to a
different variable by setting

uw=z>+4,

which we can differentiate to get

du 5
— =27
dx

Hence, we can define a formal expression, called the differential, as
du = 2zdzx.

Combining all these, we can rewrite the original indefinite integral as an
integral with respect to the new variable u:

1
/;L‘\/fl,‘2 +4dzx =/3\/$2 +4 (2zdz) = /% du.
We can then evaluate the new integral in u,

; 3/2 22 4 4)3/2
/\/Tﬁdu—:uT-l-C'zg%—l-C.

The question now is why it works. A general philosophy is that since
differentiation and integration are basically inverse processes (which is the
statements of Fundamental Theorem of Calculus), any differentiation rule



should correspond to an integration rule. For example, the linearity of dif-
ferentiation implies the linearity of integration:

= (af () + bo(z)) = 4 (@) + b g()

= /af(;c) +bg(z) dz = a/f(:t) dx + b/g(a;) dz.

In fact, the u-substitution method in integration is based on the chain rule
in differentiation. Recall the chain rule says that

d i j
73/ @) = f'(u(@)' ().

Therefore,

/f/(’lL(fL‘))‘lL,(.’L‘) dz = f(u(z)) + C.

If we define the differential of u as

du
lu:= — dz
du e Z,

then we can rewrite the integral on the left hand side as an integral in wu:

/f'(u) du = /f'(u(a:))u/(m) dz = f(u(z)) + C.

This is nothing but the u-substitution method. Let us look at a few more
examples.

Example 1.2 Sometimes there is no obvious choice which substitution to
make. Consider the indefinite integral

i

If we let u = 1 + 22, then du = 2zdz. Hence the integral becomes

T dx %du ) 9 1 1
—_— = = 7 d = —— = —— .
/ A+ 27)° / 3 2/u U SU +C 2(1+$2)+C

Instead if we let u = (1 + 2?)?, then du = 4z(1 + 22)dz. Therefore, we
can express the differential
ol — du _ du

4(1+22) 4yu
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Using this in the u-substitution,

/ zdz _/ldu_l/u_gl__ 1 L C— 1 e
(1+22)2 ) udJu 4 = 2\/u o 2(1422) ’

Notice that this still yields the same answer, but the calculations are more
involved. Therefore, it depends on experience to make a good choice of the
substitution to evaluate an indefinite integral.

Example 1.3 Ewvaluate the indefinite integral [ tanz dz.

Recall that tanz = S22 Therefore, if we let u = cosz, then the differential

. cosz”
is du = —sinz dz. Hence,
i sinx —du
tanz dx = dy = =—Inlu/+C=—-In|cosz|+ C.
cos T u

Example 1.4 Sometimes we have to manipulate the integrand a bit before
doing the u-substitution. For example, we consider the integral

sec z(secx + tan )
secx dr = dzx.
y secx + tanx

Let u = secx + tanz, then du = (secxtanz + sec®x) dx. Therefore, the
integral becomes

d
/_u =In|u| +C =1In|secz + tanz| + C.
u

Example 1.5 Ewaluate the indefinite integral fa:e‘"”2 dz.

Let © = z2, then the differential is du = 2zdz. Hence

2 1 1 1 2
/a:e_z dz = /56—“ du = —56‘“ +C = —56"‘7‘ +C.

Z

Example 1.6 When we are more experienced, sometimes we just do it with-
out explicitly mentioning the variable u. For example,

1
/ s dz:/l—d(1+x):ln|1+$|+0.

l1+zx +x

We can also evaluate some other integrals of Tational functions.

1
/zd:c :/<1———> dz=z—-In|l4+2z|+C.
142 142

Later, we will learn a method called partial fractions to evaluate integrals of
rational functions.




Example 1.7 Trigonometric identities can help us evaluate some indefinite
wntegrals. For example, using the half-angle formula,

2, [l—cos2z 1/ sin2x
/sm .Ldr—/TdJ:-§<fL— 5 >+C,

where we have evaluated the second term by

1 1
/cos 2z dzx = / 3 cos(2z) d(2z) = 5 sin 2z + C.

Question: Evaluate the indefinite integral

/cos2 x dx,

either using (i) the half-angle formula or (ii) the result in Example 1.7 and
the identity cos® z + sin’z = 1.

2 Definite Integrals

Recall that when we discuss differentiation, there are two (related) perspec-
tives. One is that differentiation is a way to produce a new function from

an old one:
d

iz
fl@) = f'(2).
A similar operation on the side of integration is the concept of indefinite
integrals.

fz) L / f(2) da.

(To be more precise, this produces a family of new functions which differed
by an additive constant.)

Another way to understand differentiation, which is more geometric, is
that if we fixed a point ¢ € (a,b), where f : (a,b) — R is a differentiable
function, then

d
£l
fx) =57 (o),
which is a number that represents the slope of the graph y = f(z) at the
point (c, f(c)). We then ask what is the corresponding concept for integra-
tion. Therefore, if f : [a,0] — R is a “nice” function, then can a certain



“tntegration” associate a number to this function which has some geometric
meaning.

b b
(@) 35 / ) i

It turns out that such a thing exists and is geometrically related to the
following problem:

Problem: Given a continuous function f : [a,b] — R, how to find the
area under the graph? 9

The simplest case is of course the “rectangles”, which correspond to
constant functions. The area is obviously given by the product of its width

and its height. v
Y
\ ,

| a L

For the general case, our idea is to do approzimations! Since we know
how to calculate the area of rectangles, it is then natural to use rectangles
to approximate the region R under the graph y = f(z). Consider first a
partition of the interval [a,b] into smaller subintervals. Then, over each
subinterval, we draw a blue rectangle which covers the region under the
graph and a black rectangle which is covered by the region under the graph.
These blue rectangles hence cover the whole region under the graph, while
the black rectangles are contained in the region under the graph. Therefore,
we get a upper and lower estimate of the actual area under the graph by
the total area of the blue and black rectangles respectively. As the partition
gets finer and finer, we expect that the approximation gets better and better
to the actual area we want to compute. This is precisely the concept of

[ BRI

S
—~ Area=C(b~a).




Area < Avea| | < Area

Riemann integration.
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3 Riemann integrability

Now, we use the general idea of approximation above to define Riemann
definite integrals.

Suppose f : [a,b] = R is a function.

Step 1: Take a partition P of the interval [a, b], i.e. a sequence

a=T0<T <Tr<x3< < Tp-1 <y =b.
We call the size of the A-th subinterval [zg_1,21], k =1,2,--- ,n
Axy =z — T
and the mesh of the partition P, which measures the fineness of the partition,
by
[P = max Axy.

Step 2: On each subinterval [z)_1, 2], we define

M = max f(z),
T€[Tp—1,Tk]
myp = min f(x).

.’tE[JJk_l,ﬂ:k]

(Note: We should be more careful here since the max/min may not exist in
general if f is not continuous. In those cases, we have to replace max/min
by sup/inf. Unlike max/min, sup/inf is the smallest upper bound/largest
lower bound, which always exists for any function.)



Step 3: Approximation by rectangles. Define the upper sum and lower
sum relative to the partition P by

U(f,P) =) MpAzy,
k=1

L(f, P) = Z miAxy,.
k=1
Clearly, we have
L(f,P) < A<U(f,P),
where A is the area of the region below the graph y = f(z).
Step 4: Take a limit as |P| — 0, i.e. refine the partition indefinitely. If
both the limit exists and equal, i.e.

li ,P)=1 P),
Jm U(f,P)= Bm L(f,P),

then we say that f is Riemann integrable on [a,b] and we denote the common

limit by
b
[ t@) s,

which is called the definite integral of f on [a,b].
Fact: Some functions are NOT Riemann integrable. For example, the
function f : [0,1] — R defined by

1 if z is rational,
0 if z is irrational.

is NOT Riemann integrable. Recall that a number z is rational if 2 = p/q
for some integers p, g.

So, it makes sense to ask which functions are Riemann integrable. It
turns out that compared to differentiability, it is much easier for a function
to be Riemann integrable. In fact we have the following theorem.

Theorem 3.1 Any function f : [a,b] — R which is bounded and continuous
except only at finitely many points is Riemann integrable. In particular, any
continuous function f : [a,b] — R is Riemann integrable.

We will skip the proof of the theorem. The basic idea is that the jump
discontinuity causes error with zero area. For interested students, please
consult any textbook on mathematical analysis.



4 Definite integrals as Riemann Sums

From the last theorem in the previous section, we know that continuous
functions are Riemann integrable. In fact, we know more: not only are they
integrable, but the definite integrable can also be calculated by a Riemann
sum.

Theorem 4.1 If f : [a,b] — R is a continuous function, then it is Riemann
integrable and its definite integral can be computed by the Riemann sum:

b o b—a
/ (@) dz = lim > f(&)—,
a k=1

where &, € [T—1,xk] is ANY point in the k-th subinterval of the uniform
partition P:

b—a b—a
a=< 1 =00+ ——< <z i=x9+ k| — | <<z, =0b
n n
Hence, the theorem says that we could just use uniform partitions for

approximations and we can take any sample points & in each subinterval.
Let’s look at some examples. V)

Example 4.2 Use the method of Riemann sum to show that

b
/ ldz =b-—a.
a

Since f(x) =1 is a constant function, so ]
b . Z b—a . = b—a .
/a ldz = nlggol;f(gk) — = nh_l)go; I ——=lm@b-a)=b-a

Example 4.3 Use the method of Riemann sum to show that

1
/zd:z:
0

M| =




k 1 —1 k i
Let f(z) = z. If we take § = “= € [%==, £], then _/_ ‘
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Note that we have used the fact that
n(n+1)(2n+1)

n
k% =
2 6

Question: Try to evaluate the Riemann sum by taking different &;’s.




Example 4.5 Use the method of Riemann sum to show that

1
/ edr=e—1.
0

Let f(z) = e®. If we take & = £ € [A=1 K] then
1 n
) 1
/ e*dr = lim Ze%_
0 n—oo n
k=1
; L, i 3 3 n
= lim —(ew +en +en +---+en)
n—oo n
E n
len(l—en
= lim ——(f)
n—oo n { =en
1 1
lon
= (1-e) lim 22—
n—o0 1 _ ey
b
= (1-e)lim —=e—1.
z—0]1 — eZ

We have used the following formula for a geometric series

2
a+ar 4+ ar® + -

when r # 1. The last limit can be evaluated by the L'Hospital’s Rule.
Sometimes we can use the geometric meaning of definite integral to help

us in the calculation.

Example 4.6 We know that

2 1
/ V4 — 22 dz = ~7(2)?
> 2

gl
1—r

27,

since it is stmply half the area of the disk of radius 2.




Proposition 4.7 (Properties of definite integrals) The following prop-
erties hold for definite integrals:

(1) / (@) + 9(a)] da = / ' fla) da + / " o) .

b b
(2) / kf(z) dx = /c/ f(z) dz for any constant k.

(38) If a < b, then we have (define)

/baf(z) dz = —/abf(:c) dx.

(4) For any c € (a,b), we have

/abf(:z) dz:/:f(:r) da:+/cbf(,r) di.

In fact, the same holds even for any c > b or ¢ < a, as long as f is
continuously defined everywhere.

' ig:‘f(x)
ra A
fi Avaa(@):ﬁ%‘vfi\zA

We will finish this section by a special example that uses symmetry to
evaluate a definite integral.

Example 4.8 Show that

(SE]

) T
sin?z dx = —.
0 4

Recall that we have the symmetry cos(Z — x) = sinz for any z. Hence,

)

[SIE]

sin?z dz = /2 cos? (z — a;) dz:
0 2
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Let v = 7/2 — x, then du = —dz. Moreover, when x = 0, v = 7/2 and when
x =m/2, u=0. Therefore,

3 L7 0
/ cos” (— — J) dz = / cos®u (—du) = /
0 P E 0

In other words, we have

J

Moreover, since sin® z 4+ cos?z = 1, integrating on both sides we get

/-sin2:cd:v+/~0082xd:u=/“ldavzz.
0 0 0 2

Since the two integrals on the left are equal, we conclude that

s s
R z m
sin“x dxr = cos’z dr = —.
Jo 0 4

)3
(NIE]

2 2
cos“u du = / cos®z dx.
0

[SIE]

w3

w3

o D
sin“z dox = / cos® x dz.
0



